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I. THE RSJ MODEL OF A JOSEPHSON JUNCTION

In general both quasiparticles and Cooper pairs can tunnel through the barrier in a Josephson junction
when a potential difference (or equivalently dγ/dt ̸= 0) is present. To include this possibility we treat
the circuit model of a JJ as a parallel combination of an ideal Josephson junction (that obeys the two
Josephson equations) and a resistor (that obeys a generalization of Ohm’s law for nonlinear resistors).
The resistance will in general depend on bias voltage and temperature, RN = R(V, T ). This is known
as the resistively shunted junction model (RSJ).
A bias current on the JJ will in general split between the two branches and produce a total current of,
I = Ic sin γ + Φ0

2πRN

dγ
dt .

More generally, if a finite frequency bias current is applied, the junction typically also has parasitic
capacitance, so we add a capacitor in parallel with the ideal junction and resistor, creating the RCSJ
model. The total current through the JJ can now split three ways in general,
I = Ic sin γ+

Φ0

2πRN

dγ
dt +C d∆V

dt , where ∆V is the common voltage drop on the 3 parallel circuit elements.
Using the ac Josephson equation, this can be written as,
ℏC
2e

d2γ
dt2 = [I − Ic sin γ]− ℏ

2eRN

dγ
dt .

This equation has the appearance of a “mass times acceleration” on the left hand side, a conservative force
in square brackets, and a dissipative force (function of velocity) on the right. We can non-dimensionalize

the equation by defining a Josephson plasma frequency (at zero bias current) ωp =
√

2eIc/ℏC, which is a
measure of the natural charge oscillation frequency of a Josephson junction, and defining a dimensionless
time τ as τ = ωpt. Also define a measure of the “quality” of the junction as Q = ωpRC. High-Q means
a low-loss junction, which is important for quantum applications of Josephson junctions. With these
definitions, the equation of motion of the junction in the RCSJ approximation is,
d2γ
dτ2 + 1

Q
dγ
dτ + sin(γ) = I/Ic.

Let’s derive a potential energy associated with the conservative force and look at the equation of
motion from a power perspective. Multiply the current (I) equation by voltage ( ℏ

2e
dγ
dt ) to get the instan-

taneous power equation as,
d
dt

{
1
2 (

ℏ
2e )

2C(dγdt )
2 +

[−ℏI
2e γ − ℏIc

2e cos γ
]}

= −( ℏ
2e )

2 1
RN

(dγdt )
2.

The left side appears to be the time rate of change of kinetic energy plus potential energy, while the
right hand side is negative and represents the power dissipated in the resistor (V 2/RN ).

The potential energy associated with a Josephson junction biased by current I is therefore:
U(γ) = −ℏI

2e γ − ℏIc
2e cos γ. This is known as the tilted washboard potential. The washboard cos γ

piece is tilted by the bias current I. The solution to the original equation is now reduced to finding the
coordinate γ of a fictitious massive particle living in this potential and being subjected to driving and
drag forces. The particle mass (or junction ‘inertia’) is proportional to the capacitance C of the junction.

From an alternative perspective, the current-biased JJ acts in a manner similar to a pendulum of mass
m and length l hanging in a gravitational field g⃗. The bias current acts as an external torque on the
pendulum, and a dissipative force retards the motion of the pendulum. The equation of motion for the
analog pendulum is,

τa = mgl sin γ+D dγ
dt +M d2γ

dt2 , where the angle relative to the vertical γ is analogous to the GIPD on the
JJ, the angular velocity is analogous to the voltage on the JJ, the moment of inertia M is analogous to
the capacitance term in the JJ, the damping D is analogous to 1/RN in the JJ, and the applied torque
τa is analogous to the driving current on the JJ. A classic paper discussing this analogy is posted on the
class web site.

https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/JApplPhys_43_4721.pdf
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II. TILTED WASHBOARD POTENTIAL

The motion of a point particle in the tilted washboard potential is a useful way to visualize the behav-
ior of a current-biased JJ. Imagine a ball subjected to gravity moving over a corrugated one-dimensional
surface with various degrees of tilt and wiggling, subjected to a drag force proportional to speed. One
can think of Johnson noise in the resistor as being analogous to Brownian motion of the particle in a
viscous fluid that provides the drag. They are related through the Fluctuation-Dissipation theorem.

Starting from a horizontal washboard (I = 0) imagine tilting it to one side as the dc current is applied.
As this happens, the phase point will seek out a new minimum in the potential, and move to a coordinate
given by γ = sin−1( IdcIc

). This is an important result. It says that we can control the value of the GIPD
on the junciton by applying an external bias current. Alternatively, we can include the junction in a
superconducting loop (aka an RF SQUID) and apply a magnetic field to the loop. This will induce
a screening current in the loop to maintain fluxoid quantiztion, and current-bias the junction, again
allowing us to control the value of the GIPD.
At some point as the tilt is increased the phase point is unstable and will begin to run (dγdt > 0),

putting the junction in to the finite-voltage state. The critical tilt comes when |dUdγ | > 0 for all γ, or

when Idc = Ic.
As the phase point moves in the case of I > Ic, it will speed up and slow down periodically (but not
sinusoidally) in time. For strong enough driving current (Idc >> Ic) the junction will behave like a

resistor, Idc ≈ ℏ
2eRN

dγ
dt , or in other words, IdcRN = ℏ

2e
dγ
dt = ∆V .

III. CURRENT-VOLTAGE CHARACTERISTIC OF A JOSEPHSON JUNCTION

Since the potential is periodic, we expect the motion of the phase point to be periodic too. We can
write the time-average of the voltage as,〈

dγ
dt

〉
≡ 2π

T , where T is the period of the motion.

One can also write
〈

dγ
dt

〉
≡ 2π

T = 2e
ℏ ⟨V ⟩.

The current-voltage characteristic of a non-hysteretic (C → 0) junction is found to be,

⟨V ⟩ =
{

0 I < Ic
IRN

√
1− (Ic/I)2 I > Ic

If, on the other hand, the junction has large capacitance C, it is analogous to a bowling ball running
down the periodic potential under the influence of drag. The onset of voltage with increasing tilt will be
the same as the previous (C → 0) case. However, as the tilt is reduced in the running state, the inertia of
the junction/bowling ball will prevent it from coming to rest at I = Ic as the current is reduced. It will
take a further reduction of the tilt to bring the phase point to rest. This results in a hysteretic response
of the junction, and allows one to create a digital bit in which the JJ will have either zero voltage or
a finite voltage for the same current, depending on the history of the device. This was the basis for
Josephson logic used to make computers back in the 1980’s. Nowadays the dissipation in the ’1’ state is
too great to tolerate, so more subtle ways of representing ’1’s and ’0’s using Josephson junctions have
been developed!

IV. DC AND AC CURRENT-BIASED JOSEPHSON JUNCTION

Now consider a Josephson junction with an ac current bias in addition to the dc bias. The total
current through the JJ is split three ways in general (going through the ideal JJ, resistor, capacitor),

Idc + Iac sin(ωact) = Ic sin γ + Φ0

2πRN

dγ
dt + C Φ0

2π
d2γ
dt2 .

Multiply this current (I) equation by voltage ( ℏ
2e

dγ
dt ) to get the instantaneous power equation as,

d
dt

{
1
2 (

ℏ
2e )

2C(dγdt )
2 +

[−ℏI
2e γ − ℏIc

2e cos γ
]}

=
[
ℏIac sin(ωact)

2e − ( ℏ
2e )

2 1
RN

dγ
dt

]
dγ
dt .

The left side appears to be the time rate of change of kinetic energy plus potential energy, while the
right hand side is the power dissipated in the resistor plus a fluctuating (time-dependent) force provided
by the AC current bias.
Clasically, the ac bias current has two consequences:
1) The agitation of the washboard produced by the “ac wiggle” will induce the phase particle to jump
over the barrier a little early as the washboard is tilted towards the critical current. Thus the critical
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current will be reduced slightly by this agitation.
2) Shapiro steps. Consider the junction in the running (dγdt ̸= 0) finite-voltage state. As it “falls” along
the tilted washboard, the fictitious phase particle will speed up and slow down periodically in time. The
motion is perioidic, but not sinusoidal. On average the phase particle will cover 2π radians in a period
T , resulting in an average angular frequency ⟨dγdt ⟩ = 2π/T .

Shapiro Steps. A resonance condition can be satisfied when the ac drive frequency ωac coincides
with the periodicity of the motion of the phase point 2π/T . In this case the driving current source can
“phase lock” with motion of the phase particle and there can be resonant absorption of energy by the JJ.
Due to the intrinsic nonlinearity of the JJ, this may happen over a range of dc current values, resulting
in a “Shapiro step” in the current-voltage characteristic. The first Shapiro step will occur at a voltage
given by ⟨V1⟩ = ℏωac

2e .
As the washboard is tilted further (higher Idc), the phase particle will move faster and it can cover
multiple 2π periods of the washboard potential in the period of the ac drive. Hence there will be
higher-order Shapiro steps, given by voltages ⟨Vn⟩ = nℏωac

2e , with n = 1, 2, 3.... Plugging in the numbers,
the voltage step size will be Vn = n ν

483.6MHz/µV , where ν is the linear frequency of the ac current bias

in MHz.
The class web site shows these Shapiro steps in the IV curve of a Nb point contact. Note that the
presence of Shapiro steps in the IV-curve of a junction illuminated by microwaves is often used as
evidence of, or for some people “proof”, that the Josephson effect is active in the junction.

Comments about normal resistance RN in Josephson junctions. Note that decreasing dissi-
pation in a Josephson junction corresponds to having larger values of RN . The normal state resistance
is thought to be due to quasi-particles that reside in the superconducting banks of the Josephson
junction, and which tunnel through the barrier when a finite potential diference is present. The fewer
such quasiparticles, the fewer the conduction channels through the barrier, and therfore the higher the
resistance. In principle, by going to low temperatures it should be possible to reduce the number of
quasiparticles in an s-wave (i.e. fully-gapped) superconductor effectively to zero. However, this has
proven to be notoriously difficult in practice. Recent works show evidence of large numbers of residual
quasiparticles, perhaps due to cosmic rays, infrared radiation from warmer nearby objects, magnetic
impurities, persistent excitation with microwave photons, etc.

When does a current-biased Josephson junction show quantum behavior? The titled wash-
board potential produces a series of anharmonic wells for the phase point γ. Under certain conditions
there are discrete energy eigenstates in these wells, and for low enough temperature it is possible to
measure transitions between these states, and to measure the tunneling of the phase point out of these
finite wells. This is discussed in a document on the class website about the quantum version of the
current-biased Josephson junction.

https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Shapiro Steps.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/When is a Current-Biased JJ in the Quantum Limit.pdf
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